Heavy ice off East Coast 2017 caused by winds, cold temperatures, and icebergs

A typically insightful post by Susan Crockford. If this field of icebergs persist it seems likely to chill the SST in that part of the Atlantic. Watch to see if the cold water encourages high pressure of a “Newfoundland Wheel” sort. Joe Bastardi suggests high pressure to the north can lead to stronger hurricanes to the south.

Typically the media reports such a shift to the south of sea-ice as a loss of ice to the north. It seldom reports the chilling of the water to the south. Sea-ice can achieve such chilling where a cold current can’t, because a cold current, being denser than the milder water it moves into, tends to sink. Icebergs bob merrily onward, refusing to sink, and greatly chill the waters they move into. This can allow colder currents to move further south at the surface, because they are no longer moving into milder waters. I sometimes wonder if it is such a shift in a field of ice that causes a “flip” from a warm AMO to a cold one.

polarbearscience

Heavy sea ice off Newfoundland and southern Labrador has been an issue for months: it brought record-breaking numbers of polar bear visitors onshore in early March and April and since then has hampered the efforts of fisherman to get out to sea.

Newfoundland fishing boats stuck in ice_DFO_May 26 2017 CBC

Let’s look back in time at how the ice built up, from early January to today, using ice maps and charts I’ve downloaded from the Canadian Ice Service and news reports published over the last few months.

The tour is illuminating because it shows the development of the thick ice over time and shows how strong winds from a May storm combined with an extensive iceberg field contributed to the current situation.

Bottom line: I can only conclude that climate change researcher David Barber was grandstanding today when he told the media that global warming is to blame for Newfoundland’s record thick sea ice conditions this year. …

View original post 1,867 more words