ARCTIC SEA ICE —Groping In Darkness—(Updated Sunday Evening)

It is somewhat appalling how swiftly the days grow shorter, even way down south here at 42.75° North latitude, in southern New Hampshire. The month before and the month after the equinox see the swiftest shrinkage of daylight,  nearly four minutes a day around here. By December days are short, but not getting much shorter, and one can adjust to the status quo, but in October one exists in a sort of trauma.

I spent a year up at latitude 58° north, at the top of Scotland, and was completely unprepared for the swifter decent into darkness. I really think someone should have warned me. Ever since I have had greater respect for people who call such a plunge into darkness “normal.”, because that is their homeland.

Of course, the further north you go the greater and swifter the change gets, until you arrive at the Pole where it is the all-or-nothing of a six-month-day followed by a six-month-night. Up at latitude 84°N, where Faboo (my name for the North Pole Camera) is located, the sun has set until spring, and even if the camera lens wasn’t encrusted with hoarfrost, there would be little to see but darkness and nearly black twilight. As it is you can hardly see any difference between day and night.NP3 1 1030 2015cam1_4 NP3 1 1031 2015cam1_1

It is rather hard to write interesting things with such a black view as a basis. To make matters worse, both Faboo’s GPS and weather buoy haven’t bothered report since October 23. The best I can do is hope to catch one of the reports from co-located Mass Balance Buoy 2015D:, which are sporadic at best.   I do know Faboo drifted as far south as 84.11°, and then drifted back to the northwest to 84.16° N, 7.11° W, and now again has floated south to 84.11° N, 6.91° W, with the most recent temperature reported at -22.01°C.

The O-buoys have been equally as frustrating, with the entire site down much of last week. Now that it is operating again you have to be on your toes, and have more free time than I have, to catch the brief times of bright twilight, which is all that the day now amounts to.

The most interesting O-bouy camera has been O-buoy 14, which likely is causing much wailing and gnashing of teeth among the poor fellows who spent so much time and effort placing it, as it was by sheer chance located on what turned out to be a sort of San Andrea Fault. The odds of this happening are fairly slim,  though last year the arctic explorer Thomas Urlich did have a lead open up six feet from his tent as he slept.

These faults in the sea-ice have little to do with whether it is warm or cold, and are brought about by the the colossal stresses put on the ice by the winds. They create brief areas of relative mildness, as the open water steams like a hot cup of tea though it is below the freezing point of fresh water. Then the open water flash freezes. (Notice the layers in the ice exposed by the lead in the picture below, indicating there is more complexity to the growth of ice than some imagine.)

Freezing Lead 328125_original

Here are some of O-buoy 14’s recent pictures:

OCTOBER 25  Obuoy 14 1025B webcam OCTOBER 26Obuoy 14 1026 webcam OCTOBER 27 (notice how horizon is tilting.)Obuoy 14 1027 webcamObuoy 14 1027B webcam Obuoy 14 1027C webcam OCTOBER 31Obuoy 14 1031 webcamWe are actually witnessing the birth of a pressure ridge. This is pretty cool, but likely is bad news for the camera. I think the odds are poor that the camera will be functioning in the spring.

The other O-buoy cameras are picturing darkness or snow-smeared lenses or, in the case of O-buoy 9, not sending any pictures at all. The loss of O-buoy 9 is most sad, though perhaps I should be amazed it survived the battering it experienced in Fram Strait so long. Its final picture, after two years of reporting a journey from the far side of the Pole, was this real beauty on October 20:Obuoy 9 1020 webcam

It was at that point all the ice began grinding southwest, and perhaps the ice buckled as it crunched towards Greenland and the camera got toppled, or its radar dish got crunched or encrusted in rime. (I suppose an icebreaker may have picked it up as well.)

We still are getting reports from the O-buoy 9 weather station and the GPS, which show a general movement southwest with a few quirks back north as pulses of south winds passed. One such pulse lifted temperatures nearly to freezing Saturday morning:Obuoy 9 1101 temperature-1weekFor the most part temperatures have been between -10°C and -15°C, which once again demonstrates melting has little to do with the lessening of ice to the north; the ice is simply flushed south. What is interesting about the process this year is that the ice has been slow to be moved south. In fact a lot of the sea-ice in Fram Strait is not ice transported south, but home-grown “baby-ice”. It shows up as purple in the NRL ice-thickness map below:

Thickness 20141028 arcticictnowcast

The thicker sea-ice, transported down from the north, shows as blue, and is located further out in Fram Strait. (There may be some remnants of an earlier flush right along the coast, though that also may be crunched baby-ice, or ice calved from Greenland’s glaciers, or a mix.) The older ice shows as a sort of spear tip of blue out in Fram Strait, and O-bouy 9 is located near the point, roughly at 78.1° N and 10.8° W. It would be wonderful if they could get the poor, old camera functioning again, as that ice is likely under duress and building odd shapes, and cracking open wide leads.

The various wintertime leads and cracks and gaps are seldom wide enough to show up in the NRL ice-concentration maps. The bright red creates the the illusion ice is solid, when it often is fractured and in motion:Concentration 20151029 arcticicennowcastTo me the above map is interesting because the East Siberian, Laptev and Beaufort Seas have frozen over so swiftly, even as Bearing Strait and The north Atlantic entrance to Barents and Kara Seas are wide open. This creates a sort of imbalance, especially on the Atlantic side.  Storms seem to want to cruise up to the Pole or Barents Sea, or south to the Mediterranean, and to avoid Europe, which is making headlines with early snows to the southeast, and in southwest Siberia. (Visit the Iceagenow site for news of early snows.)

In eastern Siberia temperatures may be above normal, but that is still far too cold for rain, and, because milder means moister, they have had early snows right down into China and Mongolia. (Iceagenow has a report of China having trouble transporting oil into occupied Tibet by truck, due to snows.) The areas with early snow (which are usually snow free on this date) are shown in blue in the map below.Snowcover anomaly 20151101 2015302__1_ Unless this snowcover melts back Eurasia will have a larger than normal area “creating cold”. I suppose this is occurring because the cold normally over the Pole has been displaced south by the invasions of Atlantic and occasionally Pacific air we have seen move north.  This has resulted in a DMI graph showing it is warmer than normal north of 80°N latitude. (If you want to promote Global Warming I suggest you focus on this graph, and ignore the snows in Bulgeria and Romania falling while the trees still have green leaves.)DMI3 1101 meanT_2015

Note that “above normal” in the above graph still involves temperatures below -20°C.

Another good way to see the “warmth” at the Pole is to visit the excellent Weatherbell site, and get the week free trial of Ryan Maue’s maps. Among thousands of other maps you can get a map that shows you whether temperatures are above or below normal at the Pole. (Above normal is a cheery red, rusting to white hot, which will please Alarmists.) The map below shows a spear of Atlantic warmth coming in a curve over Svalbard and around towards Canada, past the Pole, while Pacific warmth is over by Bering Strait.Temp Anomaly 20151101 gfs_t2m_anom_arctic_1

However, before you are fooled by the red, and put on a bathing suit, it is important to compare the above map with the map of actual temperatures, For example, eastern Siberia may look a toasty red above, but check out the actual temperatures [in Fahrenheit], below.Temps 20151101 gfs_t2m_arctic_1To me the most interesting observation overall continues to be the dichotomy between the open water of Barents Sea, suggesting warmth, and the thickening ice over the Pole, suggesting increased cold. The fact it has been so cold south of Barents Sea hints that sea is getting chilled from all sides. Its open water may well lose a lot of its warmth over the course of the winter, and do so at depth, for the water is far less able to stratify when it is open and churned by winter winds.  I doubt it will freeze over swiftly like the Laptev Sea did, and as long as it is open it will be being cooled. Also cooled will be the drift of slightly warmer water that ordinarily moves east and influences the sea-ice coverage of the entire Siberian coast. This may be a case of play-today-pay-tomorrow, for the lack of ice now may create colder water and more ice to the east, next summer.

With the loss of our cameras most of my observations from now until spring will involve looking at maps and making wild speculations about what the maps may mean. Simply watching the weather over the ice can be fairly interesting, especially as you can often see an arctic outbreak developing a week before the newspapers further south go berserk with headlines about the “polar vortex,” (which often is just an arctic outbreak).

Below are the past weeks DMI maps.  Hopefully I’ll find time to discuss them later, but I’m going to visit my big sister in Boston today, so naming storms and describing their tracks will have to wait. I apologize for slacking off the past week, but I had to get a pig to market, and it weighed three hundred pounds and decided to be a problem.  That likely will make a good “Local View” post, but I did get a fat lip out of the tussle,  which took a week longer than I expected, and in such situations sea-ice gets bumped down my list of priorities, at least for while.


OK, I’m back, so let me see if I can catch up on these maps before the workweek starts. As we begin the low “Fling5zip” os drifting towards Kara Sea, with a decent and normal north flow behind it in Fram Strait, but the low “Malga” in Baffin Bay has a southerly flow ahead of it, and threatens to creat a “wong way” flow from the south in Fram Strait. Between these two storms a ridge of high pressure is developing from the high pressure “Nunu” on the Pacific side and  unnamed Atlantic high pressure I’ll dub “Tick” (which is short for “Atlantic.”)  This high pressure will deflect the storm over Iceland southeast towards the Mediterranean, so we can call it “Norit”, because I’ll ignore it.

DMI3 1026 mslp_latest.big DMI3 1026 temp_latest.big

Here we are seeing Fram5zip reaching the end of the open water, which I believe feeds storms, and reaching the ice-covered waters of the Laptev Sea, which ought fail to feed it. Back in Fram Sreait we see a weak frammerjammer forming, which likely is energy from Malda which survived the morpistication of climbing over Greenland, and is now making a complete confusion of winds in Fram Strait. Therefore call it “Messer”. It is also confusing the establishment of the ridge between Nunu and Tick across the Pole. Malga weakens in Baffin Bay.

DMI3 1027 mslp_latest.big DMI3 1027 temp_latest.big

On this map (below) we see Fling5zip weakening over the closed waters of the Laprev Sea, but a secondary, (Fling5zipson) forming over the open waters of Barents and Kara Seas. Messer is heading due east, rather than north like earlier frammerjammers. Norit has faded southeast from view , but Norit2 has appeared at the southern tip of Greenland. Nunu is strong on the Pacific side, and Tick is strong over Scandinavia. Malga is being reinforsed by energy from the south in Baffin bay.           DMI3 1027B mslp_latest.big DMI3 1027B temp_latest.big

In the next map Fling5zip is much weaker and Fling5zipson is taking over as the big storm north of Siberia, over the open waters of Kara Sea. A long cross-polar fetch extends from East Siberia to northern Scandinavia, and weak Messer is getting sucked into that flow and vanishing south. Marlga and Norit2 are exchanging energies obscenely,  south of Greenland, as a ridge through Fram Strait has finally formed between Nunu and Tick. Nunu is oulling Pacific air through Bering Strait towards the Pole. DMI3 1028 mslp_latest.big DMI3 1028 temp_latest.big

In the map below Fling5zipson is in the Kara Sea, Norit2 is bleeding energy southeast towards the Mediterranean, Malga is mushed along the east coast of Baffin Bay, and the ridge between Nunu and Tick creates complete confusion in Fram Strait. DMI3 1028B mslp_latest.big DMI3 1028B temp_latest.big

In the next map Fling5zipson is running out of open water as it slips east. The cross polar flow mixes milder air from the Pacific with cold air from east Siberia. The flow into Scandinavia is from the north. Malga is attempting to cross over Greenland. Confusion continues in Fram Strait. Norit2 is gone southeast, but Norit3 is brewing a gale southwest of oceland, and the east winds north of it are poling snow up onto Greenland. DMI3 1029 mslp_latest.bigDMI3 1029 temp_latest.big                                Fling5zipson is starting to weaken but loop-de-looping to avoid leaving the Kara Sea’s open water (I imagine). Norit3 can’t penetrate the ridge of high pressure and is loop-de-looping southwest of Iceland. Malga has undergone morphistication, and is now a weak frammerjammer. Scandinavia is starting to have a southerlky flow to the far west as the northerly flow continues to its east. Greenland is having a record increase in “ice volume, likely due to the strong east winds piling Atlantic moisture up 10,000 feet to its icecap..DMI3 1029B mslp_latest.bigDMI3 1029B temp_latest.big                               Fling4zipson and Norit3 continue their respective icclusion loop-de-loops, as Malga creates a weak southerly flow in Fram Strait. The Pacific inflow has ceased. DMI3 1030 mslp_latest.bigDMI3 1030 temp_latest.big                                Both Fling5zipson and Norit3 have weakened, and there is a cross polar ridge between Nunu and Tick, with the west side of the ridge bringing a southerly flow up over much of the north Atlantic, including Feam Strait and western Scandinavia. Malga is moving north to the top of Greenland.                                                      DMI3 1031 mslp_latest.bigDMI3 1031 temp_latest.big                                The cross polar ridge is shifting towards Eurasia, drawing mild Atlantic air north, and feeding both Malga north of Greenland and weak Norit3 wast of Iceland.  DMI3 1031B mslp_latest.bigDMI3 1031B temp_latest.big                                 Norit3 has exploded into a gale, with Malga an appendage to the north, and the cross polar ridge breaking down. The flow in Fram Strait is again confused. DMI3 1101 mslp_latest.bigDMI3 1101 temp_latest.big                                 The flow in Fram Strait is northerly again, as Norit3 heads fie Barents Seaa nd Malga stalls over the Pole. Norit4 is apparently going to try to follow Norit3, which should give Scandinavia a southerly flow and Fram Strait a northerly flow for several days, before the models start showing bizarre solutions I don’t much trust for later this week, involving a southerly flow returning to Fram Strait.                            DMI3 1101B mslp_latest.bigDMI3 1101B temp_latest.big

So far we haven’t seen big gales in the North Sea or the Baltic.

so far there hasn’t been a major flush of ice south in Fram Strait, though the ice is showing signs of cracking up a bit, with areas of “very close ice” becoming merely “close ice.”Fram Ice 1030 general_20151030


On October 24 Faboo drifted slowly northwest, achieving 84.429°N at noon before turning southeast and accelerating to 84.413°N, 7.010°W at the period’s end at 2100Z, which was 3.1 miles SW of where we began. Temperatures fell from  -13.8°C to -24.3°C at 1500Z before moderating slightly. Likely south winds became north winds, but the anemometer and wind vane have ceased to function. Probably they are rimed up with hoarfrost.

On October 25 Faboo continued southwest until it reached 7.149°W at 1500Z, after which movement turned southeast to end the period at 84.326°N, 7.110°W, which was 6.04 miles due south of where we began. The high temperature was -19.7°C at 0300Z, and the low was the coldest we’ve seen so far, -26.6°C at the end of the period.

On October 26 Faboo continued southeast 6.37 miles to 84.239°N, 6.797°W. Temperatures remained very cold, with a low of  -27.0°C at 0300Z and a high of -22.8°C at 1500Z.

On October 27 Faboo kept chugging southeast to 84.170°N, 6.444°W, which was another 5.35 miles towards Fram Strait. Temperatures moderated slightly, from a low of -25.9°C at the start to -18.5°C at 0900Z before falling back to  -23.5° at the end.

On October 28 our southeast progress slowed to 4.09 miles, and we reached 84.117°N, 6.184°W. Temperatures again moderated a little, from -23.5° at the start to -19.0°C at 0600Z before falling back to a low of -26.7°C at the end.

On October 29 we continued slowly southeast until 0300Z, when we achieved 6.139°W and turned southwest, until at noon we’d reached 84.112°N and nudged northwest, concluding the period at 84.123°N, 6.331°W, which was 1.12 miles northwest and 1.12 further  away from Fram Strait. Temperatures reached our coldest yet, -29.1°C at 0300Z when the winds apparently shifted, and then slowly rose to a high of -20.1°C at the end of the period.

On October 30 our “wrong way” drift northwest continued all day, winding us up at 84.147°N, 6.997°W, which was 4.97 miles further from Fram Strait. The winds were likely southeast from the distant Atlantic, as temperatures rose from a low of  -20.1°C at the start to -9.4°C at the end.

On October 31 our “wrong way” drift curved around to normal, as we reached  7.198°W at 0600Z before curving northeast, and 84.182°N at 0900Z before curving southeast, concluding at 84.126°N, 6.980°W, which was 3.34 miles back southeast towards Fram Strait. Temperatures fell as the wind swung around from the high of -9.4°C at the start to -17.8°C at 1500z, before rebounding slightly to -16.9°C at the end.

All things considered, we’ve made some progress, and might actually cross 84°N latitude this week.



On November 1 Faboo continued southeast 5.48 miles, winding up at 84.054°N, 6.652°W. Temperatures sank from -16.9°C to a low of -25.3°C at 0600Z and then slowly clawed back up to -19.1°C at the end of the period. The anemometer and wind vane continue to be frosted into immobility.

On November 2 Faboo slowed to 2.31 miles, drifting southeast to 84.022°N, 6.555°W. Temperatures remained fairly flat, achieving a high of -18.9°C at 0900Z and then abruptly plunging to  -28.3°C at the very end.

Today’s unofficial Mass Balance Buoy report suggests Faboo still hasn’t made is south of 84°N, but temperatures made it below -30°C to -33.77° C.

In the summer a five degree swing in temperature is big news, but once the sun sets the swings seem far larger.


DMI3 1102 mslp_latest.big DMI3 1102 temp_latest.big DMI3 1102B mslp_latest.big DMI3 1102B temp_latest.big

I missed this morning’s maps.

DMI3 1103B mslp_latest.big DMI3 1103B temp_latest.big

Norit3 has weakened greatly in Barents Sea, as has Norit4 down by Iceland, as Malga has remained a weak entity north of Greenland. What is interesting to me is that the influx of mild air, curling up and around the Pole, has seemingly created a center of very cold air; the coldest we’ve seen all autumn. It is like a whirlpool sits atop the earth sucking away heat. It remains a mystery to me, because it doesn’t make sense that when you add heat things get colder.

We may be able to muse upon this phenomenon a while longer, if models are correct and the pattern repeats in various ways. The Canadian JEM model, (available through Weatherbell, via Dr. Ryan Maue’s maps of JEM data),  shows a new swirl of mildness sucked north, surrounding the very cold air, and evetually creating a larger pool of very cold air.

CURRENT MAPWhirlpool 1 cmc_t2m_arctic_1   48 HOUR MAPWhirlpool 2 cmc_t2m_arctic_9  72 HOUR MAP Whirlpool 3 cmc_t2m_arctic_13120 HOUR MAPWhirlpool 4 cmc_t2m_arctic_21 (1)

If this whirlpool forms as the GEM model suggests, it looks to me as if we could see some more “wrong way” winds in Fram Strait. Unfortunately the O-buoy site is off line again, so we can’t check up on what O-buoy 9 is reporting from the Strait, this evening.


Sorry for being slow to update. I’ve been busy, with the little time I have to write, reworking an old “Tundra Blunder” post from August into my new “Microcritters Rule” post.


Faboo has made steady but slow progress southeast.

On November 3 Faboo only made it 1.98 miles southeast, finishing at 83.998°N, 6.405°W. Temperatures were extremely cold, only briefly nudging above -30°C to a high of -28.0°C at 0600Z, and reaching a low of -32.2°C at 1800Z,

On November 4 Faboo sped up, moving 3.42 miles and finishing at 83.966°N, 6.044°W. Temperatures warmed slightly from a low of -31.0°C at midnight to a frigid high of -21.9°C at 1500Z, before starting down again.

On November 5 Faboo accelerated further, moving 5.55 miles and arriving at 83.899°N, 5.621°W, as temperatures again fell, from a high at midnight of -24.1°C to a low at 1500Z of -30.2°C.

We have finally made it south of 84°, however on this date two years ago the buoy site I dubbed “Forkasite” had made it south to 80°, and in gale force winds was moving south 30 miles a day. I remember making a big deal about how long that buoy took to get south of 84°, but Faboo has hung back much more. It also seems toi be experiencing colder temperatures. This may only be because it is over 200 miles further north. Trying to compare Faboo with other buoys is a little like comparing apples with oranges. Here’s the report from 2 years ago:

Two years ago the ice that Forkasite was about to be bashed to pieces in the turmoil of Fram Strait, but this year’s acre of ice is still solid and even starting to thicken. (It take’s a while for surface cold to reach the bottom of sea-ice, just as it would take some time for your pipes to freeze if they were buried four feet down.)

2015D_thick 20151106

What does this mean? I suppose it means that acres and acres of ice that usually would be down in Fram Strait are held back, to the north.


O-buoy 9 has made it down to 78° North, which puts it roughly 100 miles south of where the Forkasite buoy was 2 years ago, though it is closer to the coast of Greenland, at 11°W rather than 4°W. It has yet to see the winds over 40 mph Forkasite saw, (though that may be in the near future). For the most part we have been seeing light winds and very cold temperatures, though there is a hint of warmth in our future at the very end of the temperature graph.

Obuoy 9 1106 temperature-1weekAt the very start of the graph you can see the brief warm-up that occurred with the last “wrong-way” flow. For the most part cold air has been bleeding down the east coast of Greenland, even as Arctic Sea ice has been held back. Most of the sea-ice is home grown, which means the water was open and chilled more (unprotected by ice from the north) before the relatively thin ice formed. That chilled water is likely sinking further north than usual. It is remarkable, to me at least, how variable the areas where water is chilled and (in theory) must sink are. Good luck to anyone attempting to devise a computer model that handles such variety.


O-buoy 14 is the only remaining camera with a lens un-obscured enough, and located far enough south, to give us decent daylight pictures. Here are some pictures from the past three days:Obuoy 14 1104 webcam Obuoy 14 1104B webcam Obuoy 14 1105B webcam Obuoy 14 1106B webcam

The flattened weather-mast to the lower right must be irking someone somewhere, who went through considerable bother to get the mast up there, only to see it flattened. I don’t think it is ours, but the hoarfrost over everything may explain why our anemometer quit a couple days ago . Temperatures have been down touching -30°, but are struggling up to -20°. The ice in the foreground has stopped moving, shifting and grinding, so perhaps we can hope this camera might survive, though I wouldn’t bet on it.


DMI3 1104 mslp_latest.big DMI3 1104 temp_latest.big DMI3 1105 mslp_latest.big DMI3 1105 temp_latest.big DMI3 1106 mslp_latest.big DMI3 1106 temp_latest.big DMI3 1106B mslp_latest.big DMI3 1106B temp_latest.big

A whirlpool continues to sit on top of our planet, sucking in warm air and venting it to outer space, and having something to do with a pool of very cold air north of Greenland. The low “Malga” over the Pole seemingly was revived by the inflow of milder (and likely moister) air. Some models show the low pressure south of Iceland heading straight up to the Pole, and causing chaos in Fram Strait.


Volume 20151107 BPIOMASIceVolumeAnomalyCurrentV2.1


A hat-tip to the blogger “rah” for pointing this out. I’ve been so focused on how open the Barents, Kara and East Siberian Seas are I neglected to reference 2012. How soon we forget.Ectent comparison 2012-2015 Nov 2 testimage.2


DMI3 1107 mslp_latest.big DMI3 1107 temp_latest.big DMI3 1107B mslp_latest.big DMI3 1107B temp_latest.big DMI3 1108 mslp_latest.big DMI3 1108 temp_latest.big


Polar Bear Bleeding polar-bear-radio-collar_cbc-oct-28-2015

Sickening effect of satellite radio collars polar bear researchers don’t want you to see


DMI3 1108B mslp_latest.big DMI3 1108B temp_latest.big

The whirlpool continues over the Pole, with another plume of mild air spearing up that way even though “Malga” is weaker, atop the Pole. Strong high pressure over Europe has blocked North Atlantic lows, and a low I guess I’ll dub “Crawl” is crawling up the east coast of Greenland, which is as far west as a low can track and still be a North Atlantic low. It is so far west I’d call it a frammerjammer, but it too obviously came from the Atlantic, and wasn’t home grown in Fram Strait. Across the Pole a big storm I’ll call “Crept” has come creeping up towards Bering Strait, (but I have neglected to pay attention to that side of the Pole, and can offer no background to that storm, which looks pretty big.)

Despite the big storms on both the Atlantic and Pacific side,  it doesn’t seem either will charge the Pole. Wahat is left of Malga looks likely to scoot over to the pacific side, but other than that the various sides seem likely to stall.

Over on his always-illuminating blog at Weatherbell Joseph D’Aleo suggests the high pressure over Europe will back up over the Atlantic, and low pressure now forsed far west to Greenland will gain the power to dig right down into Europe. This will be interesting to watch from our northern view, and should bring more normal northerly winds to Fram Strait. At the moment it looks like the very coast of Greenland is getting north winds, but the eastern part of Fram Strait, and across Svalbard and all the way to Finland are getting south winds. Both Faboo and O-buoy 9 are still getting the north winds, though temperatures at O-buoy 9 have risen to freezing and the winds may be just starting to briefly turn south.


On November 6 Faboo continued to accelerate slightly, covering 6.7 miles to the southeast, and finishing at 83.847°N, 4.851°W. Temperatures moderated only slightly, from a low of -29.8°C at midnight to a high of -20.4°C at 1800Z.

On November 7 Faboo slowed down, crossing 3.49 miles SSE and winding up at 83.803°N, 4.619°W. Temperatures crashed below -30°C again, falling from a high at the start of -22.8°C to -30.7°C at 1800Z.

Most of the current southerly flow seems to passing to the east of Faboo, which remains in a pool of extremely cold air. The ice north of Svalbard and Barents Sea is getting shoved north, but Faboo continues to drift southeast.


A glance at the temperature graph tells us some Atlantic air has made it north, and though the buoy hasn’t moved north, it has stopped moving south for the moment.. It also has been pushed a little west, closer to Greenland.Obuoy 9 1108 temperature-1week


Despite the invasions of mild air the DMI temperatures-north-of-80-degrees-latitude graph has touched normal for the first time in over a month. I expect this normalcy will be short lived, as a new rush of mildness is heading north from the Atlantic. Notice how much colder “normal” is than it was a month ago. Normal is now down around -25°C. So be aware, when you hear of temperatures “above normal”, we are are still talking about temperatures cold enough to freeze your socks off.DMI3 1109 meanT_2015


It doesn’t seem all that long ago that the sun was still high enough to make Siberia warmer than the Arctic Ocean. Those days are done, and now Siberia is a monster, a sort of dragon with a breath of ice rather than fire. It is a huge expanse of snow, bigger than the lower 48 of the USA, and a large amount of Siberia’s north is above the arctic circle.


Between now and early February the parts north of the Arctic Circle experience no sunshine, right down to the circle on the Solstice, and even south of the circle the sun is so low at noon it has nearly no warming effect, unless a slope faces south. It is a situation where the land is constantly losing heat to outer space.  With no warmth coming from the sun, all warmth must be imported. If warmth isn’t imported, temperatures fall continuously, reaching the coldest levels seen north of Antarctica.  -40 is quite common, and -70 is reached most winters.

Snow-cover greatly increases the ability of this landscape to get cold. This year it was established early, and although it has melted back in the very west of Russia, to the east it has increased south of Russia’s borders.

Snowcover 20141121 ims2014324

At this point the constantly building cold over Siberia becomes a sort of pulsating, undulating amoeba, a blob throwing out huge globules of deadly chill. It pays to keep an eye on this monster, to see where it is aiming its empty-eyed gaze.

Here is the current cold, from the GFS initial run.  (These maps can be clicked or opened to a new tab for better clarity and enlargement.)

Temp Siberia 1121 A gfs_t2m_asia_1

Storms running along the southern boundary of the monster attempt to punch warmth north, as huge storms in the North Pacific sometimes drive milder air up through Bering Strait and attack the northeast. This pressure doesn’t much bother the monster, who merely retracts north and exhales cold over the “warm” ice of the Arctic Sea.  Also the blob-monster can simply undulate west. Look at the map 30 hours from now.

Temp Siberia 1121 B gfs_t2m_asia_11

When the blob-monster bulges west, Europe gets nervous. 60 hours from now a sort of counter attack from the west tries to halt the westward expansion.

Temp Siberia 1121 C gfs_t2m_asia_21

When the blob-monster is halted, attacked from the west and punched in the gut from the south, he just smiles an icy smile and gets colder. The pink area in the above map in central Siberia shows temperatures dropping below minus 40 (which is a great temperature, as it is the same in Fahrenheit and Celsius).

The final map is 90 hours from now (after which the GFS model has been no good, lately.)

Temp Siberia 1121 D gfs_t2m_asia_31

This map shows a victory for Europe, as it shoves the blob-monster east.  However the victory is selfish, and shows they don’t think much of the USA, as a lot of cold pours north over the Pole. However look to the upper left. Some of the cold is curling around the top to the west, and is thinking of sneaking down on Europe from the north.

Various analog years show a pattern where Europe holds winter off for a while, but later in the winter the blob-monster comes oozing west on cruel east winds. I’m wondering if its first attack might be one of these sneak attacks, curling around from the north.


The snow-cover over the USA is more like January’s than November’s.  It is “unprecedented”, which means it is the worst in a hundred-fifty years, because we don’t have very good records from before the Weather Bureau was created.

The first map below is from before yesterday’s storm and the second is after. The main increase in snow is in northern Maine and along the Saint Lawrence River valley.

Snowcover 20141116 ims2014320_usa Snowcover 20141118 ims2014321_usa

The above maps represent a hair more than half the USA being snow-covered. It absolutely smashes prior records. It isn’t only a little more snow than the prior record. It is not merely twice as much snow-cover “as ever seen before” in November. It is somewhere around three times as much snow as was seen when the prior record was set.

And remember we are talking about records, not “normal.”  Also remember there have been mild Novembers when the snow-cover was only high up in the Rocky Mountains and far north in Canada.  This is an amazing start to what could be a winter to tell grandchildren about, unless, like me, you already have grandchildren who will see it for themselves.  It is something to jot down in your journal, and, if you don’t keep a diary, perhaps it is time to start one.

Not that it can stay this far below normal, and not that the snow-cover can’t retreat north before again advancing south. However snow-cover does create its own cold, while it lasts, and the fact this snow-cover now exists will decrease any warm-up that tries to occur, while it lasts. (I hope snow-cover and cold doesn’t last, and hope you all are annoyed at me for getting you to start diaries, which turn out to be boring.)

Joe D’Aleo was right and I was wrong, about yesterday’s storm. I couldn’t see how the cold could be eroded away, but he said the precipitation would be rain.  The fact it did rain is more proof he is much wiser than I, and that the Weatherbell site his blog is on is well worth the pittance-per-day it costs, (especially when weather isn’t boring.)

However it was a near thing. Only 40 yards up a steep hill behind my house the branches went from being wet to being silvered with ice, and this situation, with light freezing rain just up the hill, persisted all day.  I had to drive ten miles to the next town at one point, and the patch of freezing rain was roughly two miles across, facing east on the slopes of the “Wapac Range” of low hills. Everywhere else it was rain, with temperatures in the low 30’s, and the modern digital thermometer by the visor of my wife’s van often read 33 degrees F (+1 Celsius) which is about as close as you can get, to a winter event.

“At least we don’t have to shovel it.”  I must have heard that five times during the afternoon. No one was in any hurry to go outside into the cold, dark mist, and occasional light, frigid rain. I did have to go out, to deal with my goats.

I was so certain it would snow that I hustled to finish up my goat’s winter quarters and brought them in on Sunday afternoon. I thought they would say, “Oh! Isn’t this cozy!  Thank you very much!”  No such luck. After being free to constantly quarrel and butt each other all summer, they found being parted very upsetting, and bleated to each other in voices that sounded close to panic, and smashed about in the stalls, and two managed to break the brand new hooks on their doors in a matter of minutes. I spent over two hours calming them down. I even used a drill to close the doors with decking screws (to be removed in the morning) to save the eye-hooks. Finally, out of a sort of desperation, I started singing to them to calm them. Darned if it didn’t work. But then I had to sing a ridiculous goat-lullaby (which I’d invented on the spot, and hope no one over-heard), for a solid 45 minutes before they stopped their final, querulous baaing and lay down.

If course, I was late to dinner, which was ring-necked pheasant, Yorkshire pudding, and green beans prepared by my middle-son.  It was pretty good, and must have been delicious, back when it was warm.

Then yesterday morning I hurried to the stables, but was too late. The goats had wrecked the place. So I told them they had to go out in the cold rain. As soon as I opened the door they, who had hated being indoors so much, took one look and fled back to crowd together in a single stall. I’d had it. Out they went. My kindness only goes so far, especially when I have a Childcare to run. The goats made a bee-line to the space under the barn, where they turned and looked at me accusingly with reproachful eyes.

Humans can be worse. I had to deliver some bad news to our church’s preacher at a meeting last night. Basically the dwindling congregation isn’t thrilled by his sermons. It was one of those situations where the messenger gets shot, or else the person pointing out a problem is told that they themselves are the problem.  It was the perfect ending to a dark, damp, drizzly, depressing day.

It was nice to awake to brilliant sunshine this morning, though the bitter cold has returned, riding the back of a cutting breeze. A scarf that was forgotten outside and got wet in the rain, yesterday, retained the shape it had assumed when it fell, stiff as a board, when it was picked up and brought inside this morning. I may need a jackhammer to dig the final potatoes.

I have decided I’ll just number the storms this winter. Yesterday’s was #2. It had enough sleet mixed in at the start to cover a car’s windshield nearly to the top, though it slid off when the wipers were turned on.

I recall reading of a winter in the 1600’s that had 26 storms. I  figure I have only 24 to go.

20141118 satsfc

(Click to clarify and enlarge.)


20141112 satsfc

(Click to enlarge and clarify.)

The cold air has charged south, and it is colder in south Texas near the Gulf of Mexico than up here in southern New Hampshire, near the North Atlantic. At 2:00 AM, as I’m stirred by insomnia (and aching muscles due to leaf-raking,) it is fifty degrees warmer here than at the same latitude in Nebraska, 52 here and 2 there. (+11 here and -17 there, Celsius.)

It’s all coming this way. The snow has covered Canada and expanded down into the northern Great Plains in the USA, (though it has retreated in western Russia.)

Snowcover 20141111 snowNESDISnh__10_

However despite my dread about the approaching onslaught, I actually did live up to my resolution to avoid worry, and to enjoy the benign weather while it lasts.  This stuff has happened before. An article from The Weather Review in 1896 describes warmth on the east coast, as it hit minus fifty in Montana:  (Article at bottom of page.)

I decided I should take care of the leaves in the pasture, before the snow presses then all down to a brown wad.

Most have to get a “burn permit” to burn leaves, (though many ignore the law), however the bureaucrats haven’t caught up to the farmers yet, and farms require no permit. If I was in the mood to worry, I’d worry about the inevitable fee for a farm-permit which our future will inevitably hold, but maybe I’ll get lucky and die first.

In any case, I took the easy route and burned the leaves out in the pasture, rather than lugging them all to the garden to use as mulch. (Rather than the drifts of leaves becoming a brown wad that kills the grass, the ashes will fertilize.) I was glad I did it, for it never fails to generate a lovely mood at the Childcare.

On the amber autumn afternoons
When the forest has finished disrobing
Before snow’s bed sheets tuck lullaby tunes,
When Geese, who want to spin the globe, wing
Silhouettes in western skies, my rake sighs
Dry leaves to piles, and I lower to light
One leaf with one match. The children’s bright eyes
Spot the sight, and all rush up in delight.

The flames spread, the rake scuffs, and hours pass
With nothing more needed, for few jobs draw
So many helpers as turning a mass
Of rustling leaves to hot, orange awe
And the sweetest smog and the quiet delight
Of sparks swirling up in a deepening night.

Burning leaves dscn2080

 Photo Credit:


I haven’t been able to study arctic maps to the degree I did last year. I only am able to allot so many hours a day to daydreaming and goofing off, (which is what studying weather maps boils down to, when you don’t get paid for it,) and this year I have other things to daydream about, and to goof off doing.

I figure it isn’t so urgent to study the arctic any more, as the idea that the arctic is in a “death spiral” has been slinking away in shame to the shadows, where it will lurk and await the next thaw, (or perhaps the next warm PDO.)  In fact it now is starting to seem incredible that  the “death spiral” idea was ever taken seriously, and that people became so indignant when I (and many others) dared challenge it.

Those clinging to the idea of the “death spiral” now need to cling to the hope the current “warm” spike in the PDO is more than a spike, and is in fact a freak occurrence of the PDO switching back to a long-lasting “warm” phase a decade earlier than usual. They also must hope the AMO stays in its “warm” phase as well.

This Alarmist dream likely will not come true, but even if it comes true it will not make the arctic be ice-free, as they predicted, but it might result in ice-extents low enough for them to point fingers at, and wave arms about.  Otherwise such people appear to be malingering, (which is, “to avoid work by feigning illness.”) The illness, in their case, is the “fever” the planet supposedly has, and the work they are avoiding involves facing the facts they fail to look at.

Having spent nearly a decade attempting to see the facts, (despite the smoke-screen some Alarmists have created to hide evidence from honest eyes,) I’ve fallen into the habit of observing the planet from the top. Even as it becomes less politically important to do so, I think I’ll continue to do it, for the top-down view possesses a fascination quite free from politics, and owns a beauty all its own.  I won’t do it to the degree I once did, but will continue to be an observer. While I may not demonstrate the rigor of a true scientist, I will continue to be a witness.

Over the past two weeks the extent of sea-ice has increased very swiftly. It always does, as the sun sets for six months at the Pole, but this year has seen the increase be especially fast. We are all set to surpass last year’s levels, because last year the ice extent actually decreased, briefly, at this time:

DMI2 1102 icecover_current_new (click to enlarge)

Much of this increase is due to the fact a large area of open water north of the Laptev Sea, (which I called, “The Laptev Notch”), and the Laptev Sea itself, froze over.  Compare these two maps, the top being from two weeks ago, and the bottom being the current situation:Extent 20141022 arcticicennowcastDMI2 1102 arcticicennowcast

It is important not to get too swept up in the hoopla about this increase, for such hoopla is only a response to the hoopla about decreases in ice being a “death spiral.”  The open water of the Laptev Notch was an anomaly largely created by winds, but did allow a glimmer of hope to brighten the gloom of those hoping the Pole would become ice-free and the end of the world was nigh.  The “Laptev Notch” could not last, and it was to be expected that it would swiftly refreeze, that the world wouldn’t end, and that those avoiding getting a real job because the end was nigh would have to get real jobs.

The above maps also show the open waters off the north coasts of Alaska and Canada have rapidly refrozen, adding to the swiftness of the increase in the ice-extent graph. However at this point we are running out of waters easy to freeze. There may even be a “pause” in the refreeze, much like last year’s, as we run out of easy-to-freeze open water.

It should be noted we still have more open water than last year towards Bering Strait, especially in the East Siberian Sea. Without a lick of scientific data, I would suggest this coincidentally matches the “warm” spike of the PDO, and is suggestive of an influx of warmer Pacific waters.

Also it should be noted there is more ice than last year east of Svalbard in the northern reaches of Barents Sea. Without a shred of scientific data, I would suggest this coincidentally matches a down-spike of the AMO last spring and summer into its “cold” phase.  In fact there was more ice along the north coast of Svalbard during the warmest days of summer than there was in the dead of last winter. Now the AMO has settled back into its “warm” phase.  When you compare the two maps above, what do you observe?  You observe there is a little less ice along the north coast of Svalbard, despite the fact ice is growing everywhere else, up in the arctic.  Coincidence? Or proof the AMO governs the amount of sea-ice?  That is not for me to say. I am just a witness.

Sometimes my curiosity gets going, and I yearn for more stuff to witness, and more time to witness stuff with. When I’m rich I’m going to hire a “go-for” to hunt up graphs and charts and old weather maps for me.  Even so, I doubt I’ll qualify as a true scientist. However I’ll be a better witness.

As the Arctic Sea refreezes the refreeze is influenced by the weather, and the weather is influenced by the refreeze. It is a chicken-or-the-egg thing.  Weather patterns influence the snow cover and the ice extent, but the snow cover and ice extent can influence the weather patterns.  For example, a certain pattern will dump snow over Siberia, but, once Siberia is snow-covered, it allows radiational cooling to generate cold high pressure, which must influence the pattern. In the same manner open water in the Arctic Sea allows more warm, moist updrafts, reletive to ice-covered water and  snow-covered land, and such updrafts are far more likely to feed and encourage low pressure systems. Storms have a way of following the edge of the ice, but a week later, when that same area is totally ice-covered, a similar storm will weaken.  So who is controlling whom?  You decide. I am just a witness.

Two weeks ago, on October 22, high pressure had been sitting up near the Pole for a week, and the air beneath cooled until it was the coldest of the season, and then a gale charged up from Iceland to budge the high south towards Siberia. As this cold air passed over the Laptev Sea it had a lot to do with the swift refreeze of the open waters.

DMI2 1022B mslp_latest.big

As the cold air settled over Siberia on October 26th the flow behind that high pressure, (between its high pressure and the Icelandic low), brought a flood of milder Atlantic air rushing north over Scandinavia, with a tongue of that mildness extending past the Pole on the Eurasian side, however this flood of warmth was about be swiftly pinched off by new high pressure advancing north from Canada.

DMI2 1026 mslp_latest.big

By October 27th the advance of the Canadian high pressure was starting to divert the flow of Atlantic air back towards Greenland, even as the advancing Icelandic low was shunted away from the Pole towards Scandinavia. This shoved the Siberian cold east. Meanwhile an Aleutian low was squeezing that cold from the other side, before it too was shunted eastward into Alaska by the Canadian high. During the brief period when the Siberian cold was getting squeezed from both sides it poured vast amounts of very cold air into the Pacific, behind the Aleutian low.

(This verifies a pet rule of mine:  If mild air floods up towards the Pole, cold air will be surging away from the Pole somewhere else.)

DMI2 1027 mslp_latest.big

As the Siberian cold poured out over the Pacific it cooled the water, which has been at “above normal” levels, to levels “below normal,” especially along the Pacific coast of Asia.  I think we shall see this continue this winter, and have a hunch it will end the “warm” spike of the PDO and return it to its more typical “cold” pattern by spring. However it also, (and this strays miles off topic,) apparently exposed some problem with how “above normal” and “below normal” are determined.  The problem manifested in very different sea-temperature-anomaly maps being produced by the same data, and is discussed here:


DMI2 1028B mslp_latest.big

Briefly the Canadian high pressure at the Pole was creating a zonal flow, with low pressures rotating politely around it, but by Halloween it was falling apart, as a new situation developed. The high pressure was settling south over Scandinavia, which was getting north winds, even as south winds approached ahead of the next Icelandic low.  On the Pacific side another Aleutian low approached Bering Strait even as the last one weakened moving east across Alaska to northern Canada.

DMI 1031B mslp_latest.big

By November 1 the winds were swinging around to the south in Norway, but this time the flood of milder, Atlantic air is not penetrating to the Pole, but rather is swung back towaeds Greenland. The only significant south winds invading the Pole are from the revitalized low in the Canadian Archipelago, and they are not all that balmy. For the most part the Pole is quiet and calm and losing heat, which creates cold at the surface. So is Siberia.

DMI2 1101 mslp_latest.big

This brings us to today.  I’m at a loss to explain why the low pressure is extending north of Eurasia the way it is. It is time to simply watch, and be a witness, and be glad my livelihood isn’t dependent on predicting what happens next.

DMI2 1102 mslp_latest.big

However, as a witness, I’ll note the air over the Pole is the coldest we’ve seen all autumn:

DMI2 1102 meanT_2014 (click to enlarge)

DMI2 1102 temp_latest.big

Furthermore Siberia, which was milder after discharging so much cold air over the Pacific, has recharged itself and is again loaded with cold:

DMI2 1101 cmc_t2m_asia_1

When this much cold air builds up, it seldom sits up there. It is heavy, dense stuff, much heavier and denser than air to the south, so it is likely to sink under the air to the south and cause uplift and storms and arctic outbreaks.  The question then becomes, “Where?”

My guess is a lot of the Siberian air will again spill into the Pacific, but a little further north than last time, as we progress towards a winter pattern that will see Siberian air spilling across the Bering Strait into Alaska and then south.

I also guess a surge of relatively mild westerly wind will cross Europe, hinting at a winter storm track that will see the westerly winds sink south as the cold builds to the north,  until easterly winds north of that storm track start transplanting air from Siberia across the north of Europe, so that Scandinavia, which saw southwest winds from the Atlantic for much of last winter,  will see the east winds of Tolkien’s Mordor freezing their socks off.

Lastly, the cold over the Pole, separate from Siberia, will leak south into Canada behind the low in the Archipelago. I guess this is a temporary event, and part of a transitory autumnal pattern.

I confess this guess-work has great gaps and holes. For example, while I’ve figured out where air will exit the arctic, I know it must be replaced by air entering, but haven’t a clue where that would be. Either side of Greenland?

In the end, guess-work is but guessing, and I’ll likely stand corrected. Actually I look forward to correction, for I would rather stand corrected than fall. And, even without the comments of fellow bloggers to correct me, simply being a witness supplies me with more corrections than a school-teacher with a lot of red pencils, in the form of that great correcter called “Reality.”



Snowcover Oct 28 2014301


Snow-cover on October 28, available at Rutgers site at:

Snowcover Oct 28 ims2014301

Snow-cover on Oct 28, available from NOAA site at:

Over on his excellent blog at Weatherbell, Joe Bastardi today noted that we are now up among the top three on terms of world-wide snow-cover, at this date, early in the season. Not only is most of Russia covered, but a lot of Canada and Alaska as well.

Then he did something I lack the time to do, which was to check the history.  (It is important to see what the “precedent” is, before you fool about with the word “unprecedented.”) It is also helpful to know what the past shows us, in terms of what happened on other occasions. It hints at what to expect.

What Joe found surprised me, for he found some winters that started out like gang-busters, in terms of world-wide snowfall, and then backed off and became unimpressive winters. He also found winters that began with little snowfall that were late-starters, and became severe later.

This throws a monkey wrench into the works of my idea that snowfall is a feedback, and that a lot of snow in Siberia creates an Asian high pressure of sinking, cold air that creates more ice and snow, and therefore more cold, in a sort of vicious cycle.

Unfortunately I don’t have the maps of the winters that disprove my theory, and therefore can’t study what the heck went on during those years. When I’m rich I’ll hire some eager, young go-for to look all that stuff up for me.

However Joe also mentioned that one of the top three years, in terms of snowfall on October world-wide on October 29, was 1976.  There’s that year again. The winter of 1976-1977 was the worst, in terms of cold, and in terms of sea-ice along the east coast of the USA, that I can remember. So…we definitely shouldn’t lower our guard.


(Please note that this post is dated October 25, 2014. I have had a number of hits on this old post today, October 19, 2015, nearly a year later, and fear people may be taking last year’s information as being up-to-date and current. That being said, it is indeed interesting to compare the two years.)Siberian snow Nov 2 ecmwf_snowdepth_russia_41__4_(1)

(CLICK MAP TO CLARIFY AND ENLARGE) The above map jumped out at me as I prowled the web for news. I found it among the heaps of information Joseph D’Aleo provides at his blog at Weatherbell, and is one of the thousands of maps Dr. Ryan Maue provides at that site. It shows the snow-cover in Siberia building to cover most of Russia by November 2. (Please note this article was written in 2014, though it in some ways also applies to this autumn’s situation [2015]). This year the early snow seems centered more towards western Russia. Check the top of my website for the latest post on Europe.)

This is a lot of snow for this early in the winter, and does not bode well for all northern lands.  Snow-cover allows Siberia to lose heat through radiational cooling, and the area “produces” cold, pressing down as high pressure which then then moves outwards in all directions. The earlier the snow-pack forms, the earlier pools of extreme cold can be created. Already temperatures in east Siberia are touching that magic number of minus forty, where both Fahrenheit and Celsius agree. (The Maue-made temperature-map below is in Fahrenheit.)

Siberia 2 cmc_t2m_asia_1 (click to enlarge)

Freezing temperatures (below 32 Fahrenheit) are shown where sky blue turns to pink, and extend from Finland to Manchuria. Where Fahrenheit temperatures change from above zero to below zero (-18 Celsius) are shown by the deep blue areas within the pink turning to gray. When the gray blackens and then turns back to sky blue again, in the very center of the cold, we are seeing temperatures of minus forty.

These areas will enlarge as winter comes on, for Siberia experiences the coldest temperatures seen in the northern hemisphere, and can get down to minus seventy. The Arctic Ocean cannot get so cold, due to the warmer water under the ice, and only gets down to minus fifty on rare occasions due to Siberian air pouring north (and more rarely Canadian cold pouring north.)

This early in the dark days there is still open water along the Siberian coasts, and the temperature contrast is huge. The unfrozen water heats the air to plus thirty as the air over the land is minus thirty, and this sixty degree difference results in a Land-Breeze, with cold air sinking and rushing out over the sea, as the air over the sea rises. This swiftly freezes the sea, but also pushes the new ice north towards the Arctic basin, especially in the Laptev Sea.

The cold air also pushes east over the Pacific,  cooling its waters, and south into China and west into Europe, cooling lakes that, until they freeze over, remember the summer’s warmth and act like small radiators.  Once they freeze over, and once the Siberian coastline freezes over, the cold becomes more able to expand.  To have this process well underway in October is not a good sign.

You can see the warming effect of the sea on the Pacific coast, and north of Scandinavia, and to a lesser degree over the Laptev Sea.  This effect will diminish as the ice builds.  Ice seldom forms north of Scandinavia, due to tendrils of the Gulf stream, but the freeze-up of the Pacific coast is amazing, and extends out for miles. The arctic coast freezes up early, but the winds off Siberia can be so strong that ice is pushed away from land, and slightly warmer water up-wells as surface water is pushed north, and polynyas if open water can form even when temperatures are fifty below, especially in the Laptev Sea.

What I watch for is a cross-polar-flow, which brings the Siberian air to Canada and Alaska.  Though this air is warmed to some degree as it crosses the relatively mild ice on the Arctic Sea,  the warming can be a thin layer at the surface, with the bulk of air entering North America as a frowning Siberian high. This then gets even colder over the American tundra, especially as the northern Canadian Great Lakes, (Greater Slave, Lesser Slave, Bear, and Winnipeg) freeze over in October, and even more when Hudson Bay freezes over later in October into November.  The earlier the lakes and bays freeze the earlier nasty cold can build, and come howling south, and clash with moist air coming up from the Gulf of Mexico, and breed our blizzards.

What you want to see, if you want a mild winter, is a shallow Siberian snow pack that forms late.  You don’t want to see over a foot of snow covering large areas of Siberia when it is still October.

When I was young I’d be clicking my heels and anticipating snowstorms cancelling school, but those days are long gone.


Over on his excellent blog at Weatherbell, Joe Bastardi today noted that we are now up  among the top three on terms of world-wide snow-cover, at this date, early in the season. Not only is most of Russia covered, but a lot of Canada and Alaska as well.

Then he did something I lack the time to do, which was to check the history.  It is important to see what the “precedent” is, before you use the word “unprecedented.” It is also helpful to know what to expect. What Joe found surprised me, for he found some winters that started out like gang-busters, in terms of world-wide snowfall, and then backed off and became unimpressive winters. He also found winters that began with little snowfall that were late starters, and became severe later.

This throws a monkey wrench into  the works of my idea that snowfall is a feedback, and that a lot of snow creates an Asian high pressure of sinking, cold air that creates more ice and snow, and therefore more cold, in a sort of vicious cycle.

Unfortunately I don’t have the maps of the winters that disprove my theory, and therefore can’t study what the heck went on. When I’m rich I’ll hire some eager, young go-for to look all that stuff up for me.

However Joe also mentioned that one of the top three years, in terms of snowfall on October world-wide on October 29, was 1976.  There’s that year again. The winter of 1976-1977 was the worst, in terms of cold, and in terms of sea-ice along the east coast of the USA, that I can remember. So…we definitely shouldn’t lower our guard.

UPDATE #2  —NOVEMBER 2, 2014—

Here is a map of the actual November 1 snow-cover, to compare with the forecasted map I posted above.

Snowcover 20141101 ims2014305

Siberia exported its first batch of very cold air largely to the east, out over the northern Pacific ocean. Those waters, which were largely at above-normal temperatures during the summer, have been cooled and now are below-normal towards the Pacific coast of Asia.

A new batch of very cold air is pooling over Siberia:

DMI2 1101 cmc_t2m_asia_1 Watch to see where this batch of cold air goes. If it heads east again it will be starting to resemble the flow in 1976-1977, which often came across the Bering Strait and down into Canada and eventually the USA. Ar the moment the water in the Bering Strait and East Siberian Sea is open, (likely due to a “warm” spike in the predominately “cold” phase of the PDO),  and the Siberian air is being warmed by that water on its way to North America. Once those waters freeze, look out!