ARCTIC SEA ICE —A Barents Sea Blaster—(June 11-15, 2015 — Concluded)

Our last polar storm, which I guess I’ll call “Polly”, has faded away towards Bering Strait, swinging an interesting secondary along the coast of Alaska. Meanwhile notice a new storm brewing in the Kara Sea.

DMI2 0610 mslp_latest.big

I suppose I could have called the new storm “A Kara Cruncher”, but it is suppose to retrograde back into Barents Sea, so I’m leaning towards “A Barents Blaster”.  Let”s give it a name. To show I’m not preferential I’ll name it after both seas, and dub it “Karabar”.

DMI2 0611 mslp_latest.big

The thing Karabar will do is start to flush ice south through Fram Strait. This ought to make Alarmists happy, for a similar situation developed in  2007 and gave them low ice extents to bewail. They are not happy unless bewailing, which has never made a lick of sense to me, but I suppose that is just how some people are.

I’ll be updating later, as there is some interesting history to relate, regarding what occurs when ice is flushed south into the Atlantic. However I wanted to post this news while it was hot. (Or actually the temperature of ice water).

UPDATE JUNE 12  Impossible Occurrence Occurs

“Karabar” has centered itself over Barents Sea and is developing nicely, if you want to focus on a flow down through Fram Strait. (Which I do). However first I suppose I should take care of some housecleaning, regarding the fate of “Polly the Polar Gale”, which is rapidly fading away over by Bering Strait.

DMI2 0612 mslp_latest.big

One thing I’ve been wondering about Polar gales like “Polly” involves the simple fact that what goes up must come down. North of 60° latitude what goes up in the south comes down further north, as heat from the equator follows a three step process, on its way to being dissipated at the Poles:

Polar Cell atmospherecirculation

The thing about a storm like Polly is that the rising air is right at the Pole, and can’t go further north. In the nice, neat system portrayed above, it is a wrench in the works. You can’t have the Polar Cell running backwards without “grinding gears” with the Ferrel Cell,.To make the system work you either have to remove the Polar Cell, and have the Ferrel Cell extend right to the Pole, or else create a little Cell north of the Polar Cell, and, to keep it from feeling inferior, give it some sort of grandiose name like “Superpolar Cell”.

I tend to doubt the Ferrel Cell can extend to the Pole, as all the jet streams would tie themselves into a knot, or else shrink to a black hole of some sort. Even in the summer you tend to have the boundary between polar and subpolar air marked by gentler and kinder summer fronts lazily orbiting the earth. Therefore I’m going to play with the idea of a “Superpolar Cell,” right in the middle of the Polar Cell, sort of like the hole in a doughnut.

Basically a “Superpolar Cell” is created when a storm running along the boundary between the Ferrel and Polar Cells becomes a renegade, and punches right into the guts of the Polar Cell, and then lives in those guts as a sort of tapeworm, until the atmosphere, furious about being compared to a tapeworm, strangles it. (Please tell me if I’m getting too technical.)

Once a storm like “Polly” is strangled from any inflow of warm air, it seems what goes up must come down. However, because it is trapped, (in the center of a doughnut as it were), it can’t be transported by some sort of superpolar jetstream to some other hemispehere, and therefore goes down in roughly the same place it went up, (at the very least, within the Arctic Circle), like a sort of yo-yo. And because the atmosphere does not like being called a yo-yo any more than it likes being called a tapeworm, a distinct chill is felt, an icy mood despite summer sunshine.

This chill, perhaps caused by the collapsed corpse of poor strangled Polly,  can be seen in the 12z runs of both in the always-warmer GFS model and the always-colder Canadian model, pictured below. DMI2 0612 gfs_t2m_arctic_2

DMI2 0612 cmc_t2m_arctic_3

Having recieved this chilly reception, I am reluctant to tell the atmosphere what it is doing is impossible, but someone must do it. “Atmosphere, what you are doing is impossible.”

If the air is going up and down like a yo-yo, the air that comes down should be warmer. What should happen is what happens to air going over the Rocky Mountains. Polly lifts air up and snows over the Pole, and all the water vapor turning into snow releases lots of latent heat which does not come down with the snow (as the snow, being solid, doesn’t shrink more that a most minuscule amount as pressures rise, and is not subject to adiabatic heating as it falls.) The latent heat should remain with the air, and later, when Polly collapses and the air descends, it should be warmer, like a Chinook is warmer.

To be honest I don’t really understand this adiabatic cooling and heating stuff. But smarter fellows tell me moist air heats and cools less than dry air. Moist air rides up one side of the Rocky Mountains losing heat at .54°C/100 m, snows out all its moisture and becomes dry air, and then descends gaining heat at 1°C/100 m, as a snow-eating Chinook. There is no cotton picking way Polly should be creating cold air. Those maps you see above are lies, I tell you! Lies!

I’m sure some will say that the heat is lost to outer space from the tops of the clouds, but I once tried saying exactly that to a very smart person, and received quite a drubbing. (He used all sorts of facts and figures and satellite data, and I nodded and pretended to understand, while secretly vowing never to bring up the topic with that fellow ever again.)

What his argument boiled down to seemed to suggest that the tops of clouds are so very cold they can’t lose heat. Adiabatic cooling has them down as low as minus 70, and the satellites that measure how much heat is lost don’t measure much heat being lost from something that is starting out that cold. They may reflect incoming sunshine, but they don’t lose more than a tiny amount of heat brought up from the surface. Therefore what goes up must come down, and should come down warmer.

Having explained to the Atmosphere why it is wrong, I don’t expect it will listen to me. (It probably is a good thing it doesn’t listen, because if it had listened when I was a boy no one could have gone to work, because schools would have constantly been canceled due to storms.)

It really should be getting warmer, when you consider the sun now never sets north of this red line.

ARCTIC_CIRCLE_021106 And when I just checked the buoy down near 70° on the coast of Alaska, it doesn’t look like any freezing is occurring, despite the midnight sun dipping low,

Buoy 2015A 0612 camera1

The more recent report has temperatures down to  -0.19° C, which is still too warm to freeze salt water.

At Buoy 2015B, out on the open ocean northwest of there, temperatures are down to -1.60° C, which is right at freezing point of the slightly brackish salt water (made slightly fresher by melting ice). A new, wide lead has opened.

Buoy 2015B 0612 camera2 And to east of there Bouy 2013F, co-located with O-buoy 10, is showing thawing, but reporting -0.11°Obuoy 10 0612 webcamAnd even further east, Buou 2014I, co-located with O-buoy 11, shows signs of thaw and still has above-freezing temperatures at +0.59°, but they’ve dropped more than a degree.

Obuoy 11 0612 webcam

Far back to the west, at O-buoy 12 north of Bering Strait, where I have been expecting the earliest and quickest melt (away from the coasts), temperatures have been steadily below zero, though now there’s a hint of a warm-up. This recent spike towards freezing is the only sign I can find the atmosphere is listening to me.

Obuoy 12 0612 webcam Obuoy 12 0612 temperature-1week

I’ll try to get back on subject, and deal with “Karabar” and the Atlantic side, later, but I thought you should know about poor Polly.


Poor Polly continues to fade away, and any cold air involved in her demise looks like it is being recycled back over the Pole, as a weak Pacific-to-Atlantic flow is appearing, in through Bering Strait and out through Fram Strait. (In this map it is midnight on Fram Strait and noon in Bering Strait.)

DMI2 0613 mslp_latest.big

The 12z (noon in Fram Strait and midnight in Bering Strait) forecast maps for the always-warmer GFS and always-colder Canadian models continue to show the cold remains of Polly, but not much of a signature for Karabar.

DMI2 0613 gfs_t2m_arctic_2DMI2 0613 cmc_t2m_arctic_3

The main thing Karabar is doing is flushing ice out of the Arctic Sea through Fram Strait, even as the mild PDO flushes warm water into the Arctic Sea through Bering Strait.

DMI2 0613 arcticicespddrfnowcast In some ways this is heaven for Alarmists, for there will be loss of ice towards Bering Strait due to melting from beneath, and melting on the Atlantic side because ice is exported through Fram Strait to warmer waters. They will able to celebrate an apparent forthcoming decrease in extent, employing thought processes which are dubious, but which I think go something like this: “Yippie! Yippie! Yippie! Ice extent is decreasing and that means we are in an Arctic Death Spiral which means the End Of The World is coming which makes me very happy because now I won’t have to work a Real Job!”

There may be some factors involved, which those who jump to conclusions are not considering, which I have been meaning to discuss, but I do have a Real Job, and run a Real Business, and that means I have to hustle even on a Saturday. However I hope to find a free moment in the middle of the morning, and to sit back and play about with some interesting ideas.


I never really did get any time off today, and the way things are going I likely won’t get much time to dawdle in the manner I most enjoy, and therefore I figure I’d best quickly sketch out my ideas this evening, rather than noting observations. It seems if I keep putting it off I’ll never get around to it. (That has been my attitude all day; lots of things I’ve put off have come back to bite me this week, but that is more of a subject for a “Local View” post than a “Arctic Sea Ice” post).

On the Pacific side, the inflow may not have the melting I have been expecting, because the “warm” spike of the PDO seems to be entering a state of transition.  The warm area in the north Pacific, affectionately called “The Blob”, has gradually moved east until it no longer fills the mouth of the Bering Strait. In fact a mini-blob of colder-than-normal water now is south of Bering Strait.

Sea Surface anomalies June 14 2015061400_054_G6_global_I_SEASON_tm@lg@sd_000 The above map shows anomalies, and a few degrees above or below normal creates lots striking red or blue. In actual fact the temperatures within Bering Strait are cold, and the waters just south of Bering Strait are slightly less cold, though the colors give you the sense the opposite is true. It is helpful to compare the anomaly map with a map of actual temperatures. Things such as “The Blob” become far less apparent.

Sea Surface temperatures June 12 sst.daily Too often anomaly maps are used to show bright red in the arctic, without mentioning bright red may indicate temperatures barely above freezing. In some cases, because salt water is involved, red may even indicate a temperature below the freezing point of fresh water.

Keeping the relativity involved in mind, red can be a helpful color because a slight variation in temperature makes a big difference, in terms of melting ice. After all, a degree makes all the difference, when the degree is right at the freezing point. It makes the difference between solid and liquid.

Lastly it is important to remember water can exist as either liquid or solid, at exactly the freezing point. If ice at freezing is floating in water at freezing, and no heat is added, the ice will not melt. Some heat must be added to the system, and go from being available heat beside the ice to being latent heat within the melted ice. If you are into measuring such things, a huge amount of heat is sucked out of the system, melting the ice each summer, and then an equally huge amount of heat is freed each winter as the ice refreezes, simply within the phase changes from solid to liquid and back to solid. In fact James Hansen once explained away the failure of the Arctic to become as ice-free as expected by saying all the heat had been “hidden” because the melting turned it into latent heat. (He failed to mention that same heat “reappears” when the ice refreezes in the fall.)

Keeping all these things in mind, when I look at the anomaly map and see the blue mini-blob south of Bering Strait, and The Blob shifted so far east against the west coast of Canada, I get nervous about my forecast for much melting on the Pacific side of the arctic. Even though the PDO remains in its “warm” phase, the devil is in the details, and this “warm” PDO has different details than last year’s. Considering it looks like there will be less available heat, and a degree makes such a difference, there may be less melting.

(By the way, it will be interesting to watch what happens to “The Blob” next fall. I have a hunch it may fall apart rapidly as winter comes on, and cause winter to begin like last year’s, but mutate half way through.)

Looking at the same anomaly map, and shifting attention to the Atlantic side, it seems there is the clear signature of a “cold” AMO. It is a blue, backwards letter “C”,  from the tropics up the coasts of Africa and Europe and then back beneath Greenland. The only remnant of the “warm” AMO is some above-normal water northeast of Iceland (and extending off the right-hand-side of the map into Barents Sea, and on through the Kara Sea, on the right-hand-side of the map).

Sea Surface anomalies June 14 2015061400_054_G6_global_I_SEASON_tm@lg@sd_000 The switch from “warm” to “cold” AMO is something we don’t fully understand, for the last time it happened was before we had the satellites and buoys we now have. Many of our models, especially the models that involve the stratification of the sea-water, may need to be altered to account for radical changes we are about to observe.

For example, the difference in the temperature of the sea water at the surface may be hinted at by how swiftly people died, floating in the water near an iceberg after the Titanic sunk in 1912; (the cries ceased within an hour); meanwhile the three survivors of the Hood, after it exploded during the battle with the Bismark in the spring of 1941, floated for four hours in Denmark Strait yet were recovered alive and conscious.

If the water would remain liquid then figuring out the stratification of seawater would be far simpler. Basically the very cold arctic waters would sink down beneath the milder waters of the Gulf Stream, and in fact take a dive to the bottom and join the snail-like flow of deep ocean currents. However large rafts of ice refuse to sink, and bob merrily along, often defying the currents and instead sailing with the winds, even if doing so involves invading territory claimed by warmer currents.  Even as the bergs shrink in warmer waters they are creating surrounding envelopes of colder water at the surface, that move as they do, and even if this cooler water sinks beneath the warmer water it is doing so in unusual locations, and causing chaos to more organized currents which exist in computer models, (even if not always in reality.)

Sometimes it is helpful to look at extremely exaggerated examples, in order to get an idea of what goes on when subtlety makes clarity difficult. When I posted on the the Tambora eruption in 1815 here: I received all sorts of interesting feedback,  (especially when it was re-posted at WUWT and I could enjoy 150 comments), and included a link to a treasure trove of information:

Perhaps it had to due with various cycles getting nudged out of their ordinary swings by a huge, mystery eruption (likely in South America) in 1810, and the gigantic Tambora eruption in 1815, but the arctic discharged a massive amount of ice down into the Atlantic at that time.

Huge discharge of Arctic Ice screenhunter_37-feb-10-07-22Huge discharge 2 screenhunter_38-feb-10-07-23

It should be noted that so great was this discharge of ice that icebergs were grounding on the beaches of Ireland as late as August. It is thought that the poor growing season that afflicted Europe after Tambora erupted may have been due to the North Atlantic being unnaturally cold, rather than the ash in the stratosphere diminishing the sunlight.

In any case, it should be obvious that, in the above example, the discharge of ice created a reletively “ice-free” Arctic Sea, at least on the Atlantic side. There might be headlines about how this proved Global Warming was occurring, were it to happen today, even as Europe was about to be hit by notably colder weather.

It seems possible to me that, when the AMO moves into its “cold” phase, icebergs may be able to move farther south through  the colder water, not merely adding to the cooling at the surface, but to some degree deranging the conventional locations of places where down-welling and up-welling occurs. It is just one more thing to think about, when considering the “flip” of the AMO. (I wrote about it once already, here: and this was also re-posted at WUWT, gaining me 107 comments to think about.)

In conclusion, just because the storm I dubbed “Karabar” is discharging ice down through Fram Straot is no cause to feel assured warming has occurred, or may continue next winter.


The flow continues in through Bering Strait and out through Fram Strait.

DMI2 0614B arcticicespddrfnowcast

“Karabar” weakens as it continues to retrograde into the North Atlantic, kicking a secondary (“Karabarson”) east along the Barents Sea coast, and drawing a weak low I’ll call “Klyuchi” (because that is the city it is over) north from the steppes east of the Urals. “Klyuchi” may be the next storm to penetrate the Polar Cell and stand upon the Pole as a “Superpolar” cell, but only after wandering along the periphery of the Polar Cell for a solid week, traveling all the way around to north of Alaska before spiraling inward like a soap bubble to the whirlpool of a bathtub’s drain. (Alas! Again I am becoming too technical!)

Apparently “Polly” is gaining a sort of second life, having collapsed dramatically and flopped about in Hollywood death throes close enough to the boundary between the Polar and Ferrel Cell to gain a new feed of moisture, or actually a weak low pressure moving north through East Siberia.  This is perpetuating the flow in through Bering Strait, but the weak ghost of Polly will get in the way of that flow, even as that flow pushes the ghost of Polly back towards the Pole, eventually to become the weakness that draws “Klyuchi” north.

DMI2 0614 mslp_latest.big DMI2 0614B mslp_latest.big

At this point all of this activity looks like it will involve very weak systems, with light breezes, and the Pole will assume its more ordinary summer quietude.

Karabar was less impressive than I thought it might be. Buoy 2015E: hasn’t been wiped out, despite being placed on thin ice to begin with, and now on thinner ice, driven southwest dangerously close to the edge of the ice in Fram Strait. Likely it is designed to float, and report on water conditions, for they didn’t bother include an expensive camera. I doubt it will be reporting ice-conditions much longer, but currently the ice is 87 cm thick, and the temperature is  -0.10° C.

Buoy 2015E June 14 _track

I’ve been less impressed by the movement of Buoy 2015D: which is co-deployed with our faithful North Pole Camera.

Buoy 2015D 0614 _trackDespite being subjected to 20-30 mph winds by Polly, and breezes up to 16 mph by Karabar,  Polly seemed to move it more east than south, from a position at 06/06/1200Z  of 87.564°N,12.382°W, to a position at 06/08/0600Z of 87.489°N, 5.976°W. As Polly faded and Karabar started to brew up the camera drifted as far east as, at 06/12/0600Z, of 87.245°N, 3.296°W, but then it started back west to, at the last (delayed) report, a position, at 06/13/2100Z, of 87.146°N   3.907°W. The Mass Balance report for the 14th, (which has no time stamp) states it is now at 87.11° N, 4.97° W.

On other words, we haven’t even made it down to 87° north, yet. As I recall last year we were down close to 85°, and well to the east, north of Svalbard, and the ice was all full of leads and pressure ridges (which destroyed the camera in July.) This year we see much more boring ice, and mostly signs of thaw and refreezes.

NP3 1 0614A 2015cam1_6 NP3 1 0614B 2015cam1_5 NP3 1 0614C 2015cam1_4NP3 1 0614D 2015cam1_1

After the recent thaw the temperature has dropped back to  -0.16° C, and it seems the ice is 6 cm thicker and the snow is at the same depth as it was when it was deployed back on March 25.

NP3 1 0614 2015D_thick

All of which goes together to suggest the ice is more solid this year, and we may have to wait longer to see the thawing begin, up this close to the Pole.

Obuoy 9 has continued to grind its way east along the north coast of Greenland, with viability poor and temperatures hovering just below freezing.  If we could see better we might on the coming days see the shoreline fade into the distance, before coming near again as we pass Station Nord, and then turn southeast into Fram Strait. Obuoy 9 0614 webcam

Obuoy 9 0614 temperature-1week We have to travel far to the west to O-buoy 11 to find sunshine and hints of thaw, (which may have ended. Just beyond the pressure ridge in the distance there has been a lot of activity over the past two weeks, barely glimpsed through the teeth of ice formed by the ridge. Leads have opened and closed, and floes have surged left and right.

Obuoy 11 0614 webcamObuoy 11 0614 temperature-1week

As this post is (supposedly) about the Barents Sea Blaster, I’ll skip the buoys closer to Bering Strait for now. (In actual fact, I need to get to bed.)


It seems I wasn’t able to avoid the ‘flu going through the children at our Farm-childcare, (and also the local public schools), and I’ve spent an amazing amount of the past two days simply snoozing. Now I’m wide awake in the wee hours, and figure I might as well wrap up this post about the Barents Sea blaster, which was less of a blaster than I expected.

Our faithful North Pole Camera is so unimpressed that it has turned around and is now daring to creep back north a bit, which is no way to get down to Fram Strait and hurry the ice-melt.  As the winds from Karabar peaked around 20 mph at 0300z on Sunday morning, and then gradually slacked off, we made it down to, at  06/14/1200Z, a position of 87.105°N, 4.652°W, but then backed off to, at 06/14/2100Z, a position of  87.109°N   4.916°W. The co-located Mass balance buoy 2014D, (less delayed but with no time stamp) states that creep has continued, and places us 87.11° N, 5.04° W late on the 15th. (Latest report, early on the 16th, shows eastward creep beginning again, with our faithful buoy at 87.11° N, 5.00° W.) The most recent thaw has ended, with temperatures back below freezing at  -0.28° C this morning, after getting up to +0.67° C at yesterday’s late report. A picture from that time still shows little sign of thaw.

NP3 1 0615 2015cam1_1

Despite the thaws, it takes a while to get the melt-water pools going, this far north. For example, two summers ago we had one of the widest (if not deepest) melt-water pools I’ve ever seen the North Pole Camera show, which created quite a stir in the media (and was even dubbed “Lake North Pole”), but that pool never formed until late July. Two years ago, on June 29, it still looked fairly wintry:


(The view was more interesting in 2013, with an open lead to the distant left and a pressure ridge to the distant right. That was when my hobby of watching ice melt first gained me some interesting viewers and comments, and this obscure blog abruptly went from ten views a day to four hundred:  )

I’ll conclude this post with a map of Karabar fading away northwest of Scandinavia, Karabarson drifting across Scandinavia, and “Klyuchi” being kicked north and bulging into the Kara Swa. The ghost of “Polly” drifts over towards Bering Strait, and has pulled thaw north through the strait. All in all it looks less stormy, and as if it is time for a new post, which I think I’ll dub, “Klyuchi and the Quietude.”

DMI2 0616 mslp_latest.big


11 thoughts on “ARCTIC SEA ICE —A Barents Sea Blaster—(June 11-15, 2015 — Concluded)

  1. The fascinating story continues! I just about have enough time to read every word of your posts, but it’s pushing it to come up with comments to do your work justice… Today I’ll just say that I hope the more strident ‘Alarmists’ don’t annoy you too much, and remember that you have readers who very much appreciate your approach… even if they don’t find the time for commenting 🙂

  2. Thanks for the update – and nice to think that my comment has been mentally bookmarked! Just a quick thought on the cooling mystery: could it be to do with evaporation cooling? Apologies if you’ve already touched on this, or if it’s an obvious red herring here

  3. Our previous study showed that the response of tropospheric pressure to variations of solar activity (SA) and
    galactic cosmic ray (GCR) fluxes reveals a regional structure determined by the positions of the main
    climatic atmospheric fronts, as well as it strongly depends on the epochs of the large-scale circulation
    [Veretenenko and Ogurtsov, 2012]. In the epochs of increasing intensity of the meridional circulation (the
    form C according to Vangengeim-Girs classification [Vangengeim, 1952; Girs, 1974]) an increase of GCR
    fluxes at minima of the 11-year cycle is accompanied by an intensification both of extratropical cyclones at
    Polar fronts of middle latitudes and Arctic anticyclones at high latitudes of the Northern hemisphere, as well
    as by a weakening of the equatorial trough at low latitudes. In the epochs of decreasing meridional
    circulation the troposphere response to SA/GCR variations reveals a similar regional structure, i.e., the
    regions of most pronounced effects are closely related to the climatic atmospheric fronts, but the sign of
    SA/GCR effects in these regions is opposite.
    It was also detected [Veretenenko and Ogurtsov, 2012] that the evolution of the meridional circulation
    is characterized by a roughly 60-year periodicity which, in turn, influences the sign of SA/GCR effects on
    troposphere pressure. Indeed, the reversals of the correlations between sea-level pressure at high latitudes
    and sunspot numbers occurred in the 1890s, the early 1920s, 1950s and the early 1980s and coincided well
    with the changes in the evolution of the C-type meridional circulation. Hence, the aim of this work is to
    study what processes may influence the evolution of the large-scale circulation and, then, the character of
    SA/GCR effects on troposphere pressure.

    • It gives me a sort of brain cramp to try to read this kind of paper, but once I eventually start to absorb the ideas it usually is worth it. It takes me a while, however.

      I feel some hope, in that they are promising to to study “processes”, but often most of the emphasis seems to be on what effects are noticed. I hunger to understand the engineering of the arctic.

      To put it another way, if you saw a child going to and fro on a swing, and they suddenly went side to side, you might focus on what was pushing from the front and back that switched over to the side, and still you would know very little about the ropes and seat. (Not the best analogy, but the best I can do in a rush).

      But thanks for sending me this paper. I’ll study it more deeply when (and if) I get some free time.

  4. Pingback: ARCTIC SEA ICE –A Cloudy Pole– | Sunrise's Swansong

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s